
Collab-Hub: A system for creating collaborative telematic
music performances with web-based instruments and

creative development platforms

Nick Hwang
Media Arts and Game

Development
University of Wisconsin -

Whitewater
hwangn@uww.edu

Anthony T. Marasco
School of Music

The University of Texas Rio
Grande Valley

anthony.marasco@utrgv.edu

Eric Sheffield
Department of

Music/Emerging Technology in
Business and Design

Miami University
sheffie@miamioh.edu

ABSTRACT
Collab-Hub is a networking tool for sharing data across
the internet for multimedia collaboration. Through Collab-
Hub, web audio applications, custom hardware controller-
s/instruments, and digital instruments created for embed-
ded and desktop computers can all be designed around a
single framework, providing a unified approach to creating
multi-modal networked experiences.

In this talk, we discuss the design of the Collab-Hub sys-
tem and provide examples of using it to create interaction
layouts between web-based instruments/interfaces and dig-
ital musical instruments designed in Max and Pure Data.
We also showcase custom APIs for developing audiovisual
software clients in Unity and hardware clients through Ar-
duino. An analysis of pertinent historical precedents high-
lights the advantages Collab-Hub provides to artists who
may not have experience developing collaborative projects
between browsers and desktop software or may be entirely
new to designing telematic and remote performance envi-
ronments. A showcase of works created with Collab-Hub
(featuring networked interactivity across the internet, digi-
tal instrument design through the aforementioned creative
development platforms and the WebAudio API, and mul-
timodal art technologies) demonstrates the wide variety of
artistic endeavors made possible through the framework.

1. INTRODUCTION
Collab-Hub1 was born out of a desire to create local

telematic networked musical performances that promoted a
platform-agnostic mentality towards the creation of client-
side instruments and interfaces. Through the collection of
academic research and creative works published at the Web
Audio Conference, it is clear that the web browser alone

1More information on the system along with tutorials and
example interfaces can be found at https://www.collab-hub.
io

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2021, July 5–7, 2021, Barcelona, Spain.

© 2021 Copyright held by the owner/author(s).

Figure 1: The Collab-Hub logo

serves as a more than capable framework for building le-
gions of networked digital music instruments that can imbue
their users with the ability to share and respond to control
data. But working entirely within the boundaries of the
browser and the Web Audio API—or any one development
environment for that matter—can cut artists and audience
participants off from any creative potential provided by com-
plimentary tools (such as the graphical coding process pro-
vided by Max and Pure Data or the tangible interactivity of
circuit design and hardware hacking).

Using the internet and a client-server architecture as the
keystone of our system, we set out to devise a framework
that wasn’t relegated solely to the browser, but one that
could accommodate internet-enabled hardware and software
created in environments frequently used by computer musi-
cians, visual artists, hackers, and game designers. Mim-
icking the web browser’s flexibility as a tool for facilitating
collaborative creativity, we see Collab-Hub as a customiz-
able and useful tool for laptop ensembles, mixed audiovisual
ensembles, interactive installation artists, and those look-
ing to create networked experiences with internet-enabled
circuitry.

2. COMPARISON TO HISTORICAL EX-
AMPLES

Building on the works of networked musical ensembles
such as the Hub and the League of Automatic Music
Composers[6], a handful of web-centric systems for design-
ing communication systems and interaction topologies be-
tween users, browser-based instruments, and creative soft-
ware frameworks have been previously developed. Notable



Figure 2: Collab-Hub brings together creative development
environments like Pure Data, P5.js, internet-enabled hard-
ware, and embedded devices.

examples include NexusUI and NexusHub by Jesse Alli-
son[1], Soundworks by Sébastien Robaszkiewicz and Nor-
bert Schnell[4], Nü Soundworks by David Poirier-Quinot et
al.[3], and Rhizome by Sébastian Piqumel[5]. These frame-
works place a majority of their developmental focus on the
web browser, with only a handful of example templates
and add-ons to their API centered on incorporating addi-
tional software environments for developing client interfaces.
In comparison, we chose to center our efforts on bringing
the core concepts of Distributed/Networked Musical Perfor-
mance pieces to a wider audience of musicians, hardware
designers, and visual artists who many not have experience
with JavaScript but are eager to telematically collaborate
with fellow electroacoustic performers. Users who develop
digital musical instruments and signal processors within the
Max and Pure Data environment can now easily control a
fellow performer’s patch and relinquish control of their own
instrument’s parameters through the addition of our Collab-
Hub sub-modules. Furthermore, our interest in expanding
the available hardware device set for works that utilize both
the WebAudio API and custom or hacked hardware as com-
plimentary sound engines[2] has led us to develop libraries
to allow internet-enabled microcontrollers to connect to our
server as independent clients.

An additional point of contrast lies in our remotely-hosted
web server that serves to manage communication between
the client scripts that run in the background of each unique
client platform. Users do not need to write their own server
code nor do they need to worry about designing routing
topologies in Node.js. Users can customize exactly how data
is shared and routed between connected clients dynamically
in their own interfaces without having to rewrite any code
or relaunch a locally-hosted server of their own. For those
who do wish to run a version of our server locally, they
may use our upcoming standalone application that allows
for configuration of the server through a user-friendly GUI.

3. FEATURES OF COLLAB-HUB

3.1 Sharing Data in Performance
During the design phase, we focused on creating a system

that would allow users to easily set-up and modify their pre-
ferred methods of sharing data and collaborating amongst
each other in performance. If desired, the types of data and

the routing topology can be easily altered on the fly with
each environment client. When performing with a Collab-
Hub-connected client, collaborators can send any number
and types of data between Max patches and web instru-
ments.

When sending data between collaborators, Collab-Hub
uses three main data message labels: Control, Event, and
Chat. Data sent with the Control label is meant to be used
for continuous control of an instrument’s parameters. An
Event is an instantaneous occurrence, such as a button press,
a toggled boolean state change, a signifier to start or stop a
performance or playback action, or an indication of a section
change in a scored piece. Data sent with the Chat label is
designed for communicating directly with specific, groups,
or all connected users through text messages.

3.2 Basic Data Routing
When sharing data, there are two components to data

message routing: distribution and targets. The distribution
and target component of data message can be different with
each message.

Distribution can either be Publish or Push. Published
messages are sent to connected clients but their accompany-
ing data can only be grabbed by those clients who choose to
opt-in and observe those specific data streams. Sub-modules
within the client interface list available published controls
and events. Clients can update their observation settings
instantly and throughout a performance. With publish dis-
tribution, the target component determines whether or not
that data is available to other clients. Targets can either
be ’all’ (data is available for all clients in a Namespace), a
specific room name (data is available for all in that room),
or a specific client/username.

Push distribution messages are only sent to specific clients
based on their target component. Like Publish distribu-
tion, targets for Push are ’all’, a specific room name, or a
client/username. Push distribution messages do not require
target to take actions in order to receive this distribution
method.

3.3 Customizing Routing Topologies for Per-
formances

Users are not limited to committing to single routing
topology model in a performance and can design works that
switch between each of these models at a whim, resulting in
routing topology that changes as the piece progresses. Addi-
tionally, the individual distribution and target designation of
a message can be changed at any time during performance.

When designing our routing topology methods, we felt
that it was crucial to focus more on how we wanted clients to
be able to interact with each other instead of simply adapt-
ing a traditional client-server communication scheme and
sticking to that one model.

On a macro-level of organization, users can have any num-
ber of collaborators take part in a performance set inside of a
segregated Namespace. Additionally, users within a Names-
pace can further be divided up into separate Rooms. These
advanced layers of routing can be helpful for ensembles (rel-
egated to their own unique Namespace on the server) who
wish to design a series of different telematic works, each us-
ing specific instruments and a specific sub-set of performers
(with each set of performers placed into specific Rooms).



Figure 3: Collaborative interaction between three Collab-Hub clients developed in different frameworks: Max (top), the web
browser (middle), and Pure Data (bottom).



Figure 4: The Motivation Radio Eurorack module connected
to the Collab-Hub server.

4. COLLAB-HUB HARDWARE SUITE
Hardware designers can use the Collab-Hub Arduino

Client library to write firmware that connects their custom
circuits to the Collab-Hub server. The API includes a se-
ries of helpful function for sending and receiving messages
marked for both Push and Publish distribution as well as
the ability to dynamically switch between rooms in a given
Namespace. Internet-enabled microcontrollers that can be
programmed with an Arduino core (such as the ESP8266
and ESP32 by Espressif) are currently supported.

We are also developing firmware for extending Collab-
Hub to pre-exisiting web-enabled hardware. Our firmware
for Jakplugg Modular’s Motivation Radio Eurorack mod-
ule lets users connect their modular synthesizers as a stand-
alone client that can send, receive, and generate control data
without needing to be hooked up to an computer. Future
additions to our hardware suite include a new instrumen-
t/development platform bringing wireless connectivity to
the Electro-Smith Daisy, and a series of libraries and scripts
for the Monome Norns, both of which aim to be complete
before the end of 2021.

5. WORKS FEATURING COLLAB-HUB
Collab-Hub has been used to create a number of net-

worked multimedia projects. These projects include:

• SHP of THSEUS— a composition by Nick Hwang,
Eric Sheffield, Anthony T. Marasco, Anna Weisling,
and Jeff Herriot—which features a series of 10 graph-

ical images, selected at random, that are sequentially
presented to each performer. These graphical images
are categorized as either ‘sound’ or ‘control’. When
performers receive a ‘sound’ image, they interpret their
image and contribute sonically. When performers re-
ceive a ‘control’ image, they interpret their image and
send control data to the performers which affect the
gestures performed by others. This piece features a
distributed graphic score, Arduino-controlled lighting,
computer visuals, multiple instruments built in Max,
browser-based instruments built with Tone.js, and a
modular synthesizer, all networked through Collab-
Hub.2

• RhumbLine—a multimedia web-streamed installation
by Margaret Schedel, Robert Cosgrove, Brian Smith,
and Nick Hwang—which allows users to perform
telematically physical wooden frog sculptures and
hear/view their sonic output through a live audiovi-
sual web stream.3

• Experiments in real-time interaction through net-
worked musical performances undertaken by Marc
Ainger and Federico Cámara Halac of the Advanced
Computing Center for the Arts and Design at Ohio
State University.4

6. REFERENCES
[1] J. T. Allison, Y. Oh, and B. Taylor. Nexus:

Collaborative performance for the masses, handling
instrument interface distribution through the web. In
NIME, pages 1–6, 2013.

[2] A. T. Marasco and J. Allison. Connecting web audio to
cyber-hacked instruments in performance. In
A. Xambó, S. R. Mart́ın, and G. Roma, editors,
Proceedings of the International Web Audio
Conference, WAC ’19, pages 119–122, Trondheim,
Norway, December 2019. NTNU.

[3] D. Poirier-Quinot, B. Matuszewski, N. Schnell, and
O. Warusfel. Nü soundworks: Using spectators
smartphones as a distributed network of speakers and
sensors during live performances. In F. Thalmann and
S. Ewert, editors, Proceedings of the International Web
Audio Conference, WAC ’17, London, United Kingdom,
August 2017. Queen Mary University of London.

[4] S. Robaszkiewicz and N. Schnell. Soundworks - a
playground for artists and developers to create
collaborative mobile web performances. In
S. Goldszmidt, N. Schnell, V. Saiz, and
B. Matuszewski, editors, Proceedings of the
International Web Audio Conference, WAC ’15, Paris,
France, January 2015. IRCAM.

[5] T. Shaw, S. Piquemal, and J. Bowers. Fields: an
exploration into the use of mobile devices as a medium
for sound diffusion. In NIME, pages 281–284, 2015.

[6] G. Surges and C. Burns. Networking infrastructure for
collaborative laptop improvisation. Spark Festival
Proceedings, 2008.

2http://aweisling.com/#/shp-of-thseus/
3https://www.rhumbline.io/
4https://accad.osu.edu/research-gallery/
networked-performance


